- $k_r = \text{coefficient}$ of thermal transport by radiation, B.t.u./(hr.) (ft.) (°F.)
- k, = coefficient of thermal transport through stem. B.t.u. /(hr.) (ft.) (°F.)
- k_{ef} = thermal conductivity of steel, B.t.u./(hr.) (ft.) ($^{\circ}$ F.)
- $\ddot{q}_c = rate$ of heat transfer by conduction through the fluid, B.t.u. per hour
- $q_m =$ measured rate of energy addition, B.t.u. per hour
- $\overset{\mathrm{o}}{q}_p$ = rate of heat transfer through pins, B.t.u. per hour
- \hat{q}_r = rate of heat transfer by radiation, B.t.u. per hour
- $q_a =$ rate of heat transfer through stem, B.t.u. per hour
- $r_i = inner radius, feet$
- ro = outer radius, feet
- $r_p = radius of pins, feet$ $t_i = temperature at inner radius, {}^{\circ}F.$
- $t_0 = temperature at outer radius, °F.$
- € = emissivity
- $\phi() =$ function of
- ϕA = ratio of area of complete sphere to area of sphere minus area intercepted by shaft

LITERATURE CITED

- (1) Comings, E. W., Nathan, M. F., Ind. Eng. Chem. 39, 964 (1947).
- (2) Eucken, A., Physik Z. 14, 324 (1913).

- (3) Golding, B. H., Sage, B. H., Ind. Eng. Chem. 43, 160 (1951).
 (4) Hilsenrath, J. and others, "Tables of Thermal Properties of Gases," Natl. Bur. Standards, Circ. 564 (1955).
- (5) Hilsenrath, J., Touloukian, Y. S., Trans. Am. Soc. Mech. Engrs. 76, 967 (1954).
 (6) Johnston, H. L., Giauque, W. F., J. Am. Chem. Soc. 51,
- 3194 (1929).
- (7) Johnston, H. L., Grilly, E. R., J. Chem. Phys. 14, 233 (1946).
- (8) Meyers, C. H., Bur. Standards J. Research 9, 807 (1932).
- (9) Opfell, J. B., Schlinger, W. G., Sage, B. H., Ind. Eng. Chem. 46, 189 (1954).
- (10) Richter, G. N., Sage, B. H., Ind. Eng. Chem., Chem. Eng. Data Ser. 2, No. 1, 61 (1957).
 (11) Todd, G. W., Proc. Roy. Soc. (London) A 83, 19 (1909).

- (11) 1000, G. W., Proc. Roy. Soc. (London) A 83, 19 (1909).
 (12) Winkelmann, A., Ann. phys. 156, 497 (1875).
 (13) Wooley, H. W., "Thermodynamic Properties of Gaseous Nitric Oxide," Natl. Bur. Standards, Rept. 2602 (1955).
 (14) Yost, D. M., Russell, H., Jr., "Systematic Inorganic Chemis-
- try," Chap. I, Prentice-Hall, New York, 1944.

Received for review November 14, 1957. Accepted June 2, 1958. Work sponsored by Project SQUID which is supported by the Office of Naval Research under Contract N6-ori-105, T. O. III, NR-098-038. Reproduction in full or in part is permitted for any use of the United States Government.

Low Temperature Vapor-Liquid Equilibrium in Light Hydrocarbon Mixtures: Methane-Ethane-Propane System

A. ROY PRICE¹ and RIKI KOBAYASHI The Rice Institute, Houston, Tex.

While the vapor-liquid equilibrium data for light hydrocarbons are relatively abundant above 50° F., a review of the literature indicates a need for such data at lower temperatures and high pressures. Very few phase equilibria data are available with which to test correlations extending into the low temperature regions. The systems which have been studied heretofore (and their references) are listed below:

System	Source
Methane-ethylene	(9, 34)
Methane-ethane	(3, 14, 25)
Methane-propane	(1, 27)
Methane-n-butane	(18, 28)
Ethylene-ethane	(13, 15)
Ethylene-propane	(16, 26)
Ethylene-propylene	(16)
Methane-ethylene-ethane	(9)
Ethylene-ethane-acetylene	(15)
Natural gases	(6, 7, 31)

The purpose of this investigation was to obtain phase equilibria data at low temperatures to supplement the data above and provide a basis for the evaluation of correlations for low temperature K-values. The ternary methane-ethanepropane system was selected because of its basic, yet multicomponent nature. Six temperatures were investigated, extending from 50° down to - 200°F. Pressures at 100 and 200 p.s.i. intervals up to the critical states were chosen.

EXPERIMENTAL APPARATUS

The vapor recycle equipment used by Harvey (10) was modified for this study. The apparatus can be divided into six functional sections: equilibrium, pressure control, temperature control, charge, sampling, and vacuum systems.

Figure 1 presents the assembly diagram of the experimental apparatus.

The equilibrium cell, C, is submerged in a constant temperature bath contained in a Dewar flask. A Jerguson transparent gage with stainless steel body was used for the cell. Inlet and outlet holes were drilled in the bottom and top, respectively. Thermocouple wells of capillary steel tubing were inserted about an inch from the top and bottom, and a liquid sample tap was drilled near the bottom. Teflon gaskets were used between the glass windows and the metal body, and have been successful down to -250°F. at pressures up to 2000 p.s.i. The windows of the equilibrium cell were centered with respect to the slits in the Dewar flask to permit clear visibility of the cell contents at all times.

Another Jerguson transparent gage, R, was located outside the bath to permit detection of any retrograde condensation of the recycle vapors at room temperature. A totally enclosed magnetic pump, P, provided the recirculation without introducing a source of high pressure leaks. The variable volume cell, V, served as a reservoir of vapor and also as a mercury receptacle used in the regulation of pressure during the charging, equilibration, and liquid sampling periods.

The primary cooling system was similar to that used by Bloomer and others in their study of the methane-ethane system (3). The temperature regulation was provided by controlling the rate of evaporation of liquid nitrogen. In this manner, temperature could be regulated to within 0.1°F. of a preassigned value. Calibrated copper-constantan thermocouples placed in the two thermowells and at three locations within the liquid bath indic ited the temperature.

The various ternary mixtures studied were synthesized within the equilibrium cell by a trial and error procedure of adding each pure component into the cell. The last traces of heavy hydrocarbons, water, and carbon dioxide were

¹Present address, Humble Oil and Refining Co., Baytown, Tex.

Figure 1. Assembly diagram of experimental apparatus

A.	Ascarite drier	Р.	Magnetic pump
AB.	Alcohol bath	PB,	Primary bath
AC.	Auxiliary cooling coil	PG,	Pressure generator
$B_{1}, B_{2}, B_{3}, B_{3}$	Calibrated volumetric bulbs	PV.	Pressure vessel
с. сн.	Visual equilibrium cell Charge	<i>R</i> ,	Visual cell for retrograde condensation
CP.	Centrifugal pump	RC.	Recycle coil
CT.	Copper tube with slits for bath	RD.	Rupture disk
	circulation	RG.	Low pressure regulator
D.	Drierite drier	RT.	Gas rotameter
D1, D2.	Stainless steel drying tubes	S	Air-powered stirrer
DF.	Dewar flask	S1, S2.	Sample containers
Ε.	Equilibrium section	SG.	Silica gel driers
F.	Calibrated glass mixing flask	TC.	Thermocouple well
G., G., G.	Pressure gages	ΥК.	Surge tank
G., G.		<i>V</i> .	Variable volume cell
н.	Mercury reservoir	Vac.	Vacuum
М.	Mercury pump	VC.	Vaporization coil
MN.	Manometer	W.	Water bath
Ν.	Needle valve	1, 2.	Special charge cylinders
NB.	Liquid nitrogen bath	<i>X</i> .	Needle valve
NF.	Liquid nitrogen flask	X .	Glass stopcock

removed from the gases by successive contact with activated carbon, Drierite, and Ascarite.

After thermal equilibrium in the cell had been reached, it was found that thermodynamic equilibrium was ensured by circulating the vapors at full recycle rate for 30 minutes and at a reduced recycle rate for approximately 30 more minutes. A recycle coil, RC, cooled the recycle vapors to the bath temperature before entering the equilibrium cell. This recycle period was sufficient to ensure that the composition of the vapors in the variable volume cell was identical with the equilibrium vapor in the equilibrium cell. The vapor trapped in the variable volume cell after the liquid sample was taken served as the vapor sample.

The liquid sample was taken through a capillary tube from the side but near the bottom of the equilibrium cell. The capillary tubing outside the bath was wrapped with resistance wire, so that the fluid in the sample lines could be heated during the sample operation. The snug-fitting Nichrome wire was inserted in the line between the sample valve and the equilibrium cell to minimize holdup in the sample line.

MATERIALS

The gases used were obtained from the following sources: methane, Phillips Petroleum Co., Research grade, 99.5%; methane, Tennessee Gas Transmission Co., line gas from selected dehydration station, 99.6%; ethane, Phillips Petroleum Co., Research grade, 99.9%; and propane, Phillips Petroleum Co., Pure grade, 99.0%.

ANALYTICAL METHODS

Two methods were used to determine the composition of the equilibrium phases: infrared spectroscopy and gasliquid partition chromatography. In general, the infrared analyses were confined to the concentration region in which all components exceeded 10 mole %. Chromatography proved particularly useful in obtaining the analysis in concentration regions where one or more of the components was dilute. Frequent comparisons of the analyses by the two methods were made to check for mutual consistency.

Infrared Analyses. A standard Beckman IR-2 infrared spectrophotometer equipped with a modified 50-cm. gas cell was available for the analyses. The following wave lengths in the infrared region proved to have favorable absorption characteristics and low interference: methane: 7.78 microns; ethane: 9.43 microns; and propane: 12.34 microns. Some interference, however, did occur and it was necessary to develop calibration curves (such as those presented in Figures 2, 3, and 4) from analyses of known synthetic mixtures. Methane did not interfere with the absorption either at the ethane or propane wave lengths; hence the parameters are shown as per cent propane on the ethane plot and per cent ethane on the propane calibration. Serious flattening of the methane curve prevented accurate determination of methane by direct measurement.

To analyze a given gas mixture, absorbance measurements were made on the gas at the ethane and propane wave lengths, and corresponding total pressures. As the compositions of the mixtures were not known, successive approximations for the propane and then ethane concentrations were made through the use of expanded figures similar to Figures 2, 3, and 4 to establish their concentrations. Because the measurements were made at reduced pressures, Dalton's law was assumed to hold to convert from partial pressures to mole fractions. The concentration of methane was obtained by difference when infrared analyses were made.

Chromotographic Analyses. Gas-liquid partition chromatography (GLPC) was investigated as an alternative analytical method, especially for applications in which the concentration of at least one of the components was low (23). At the time of the investigation (spring of 1955) few pub-

20 30 % C, 10 C, IN C, C, IN C,

Figure 2. Ethane calibration curve for infrared analysis

Figure 3. Propone calibration curve for infrared analysis

lications on gas-liquid partition chromatography existed (5, 11, 12, 20, 21, 24), none emphasizing high analytical accuracy. Considerable aid in the development of a procedure for accurate analysis by chromatographic means was obtained from the Houston Research Laboratory of Shell Chemical Corp. Of the several liquids tried, kerosine was chosen for the fixed liquid phase. The solid phase selected was crushed, screened Celite C-3 firebrick manufactured by Johns-Manville. Helium was used as the carrier gas because its high thermal conductivity permitted ease of detection with a commercial thermal conductivity cell. The diagram of the chromatographic apparatus is presented in Figure 5.

Figure 5. Diagram of chromatographic apparatus

The output from the conductivity cell was amplified as desired by means of an attenuated linear direct current amplifier. In this way, the peak areas were adjusted to give the greatest measurable areas by means of a planimeter. The temperature-sensitive portions of the chromatographic apparatus were placed in a constant temperature ice bath. Gas flow rates were adjusted by means of pressure regulators and rotameters. It was imperative that the cell current, zero output base line, gas flow rate, and cell temperature remain constant during analyses. A 2-hour stabilization period was allowed before starting any analysis.

Figure 6 shows a set of elution curves from a typical sample, analyzed as 50-40-10 in mole percentages of methane, ethane, and propane, respectively. The degree of resolution between components depends upon the relative solubilities of the components, the length of the column, and only slightly upon flow rate.

There is a direct relation between the areas under the peaks and the amount of the components in the sample. Because the concentration, y, of the eluted gases in the carrier stream is so low (about 0.5%) the thermal conductivity vs. concentration curves are assumed straight for this concentration range. The e.m.f. from the conductivity cell is in direct proportion to the thermal conductivity of the mixture so the following equation can be written:

$$E = cy \tag{1}$$

where

E = e.m.f. from there al conductivity cell (expressed in inches of needle deflection)

c = proportionality constant

The area, A_i , under one of the peaks is given by

$$A_{i} = \int_{t_{1}}^{t_{2}} Edt \qquad (2)$$

where

t = time

 t_1 and $t_2 = \text{times of initial and final detection of the$ *i*th component

Substituting,

$$A_{i} = \int_{t_{1}}^{t_{2}} cy_{i} dt = \int_{t_{1}}^{t_{2}} \frac{c}{Q_{a}} y_{i} Q_{a} dt = \frac{c}{Q_{a}} M_{i}$$
(3)

where

Q, = flow rate of carrier gas during sample analysis

 M_i = moles of component *i* in sample

(s subscript refers to sample being analyzed)

To eliminate the proportionality constant, Equation 3 is divided by the peak area of a reference sample of the pure component:

$$\frac{A_i}{A_R} = \frac{M_i}{M_R} \frac{Q_R}{Q_S} \tag{4}$$

where

 M_R = moles of pure component reference sample charged (*R* subscript refers to reference sample)

 M_R may be related to M_{\bullet} by taking into account differences in compressibility:

$$M_R = M_s \frac{Z_s}{Z_R} \tag{5}$$

where

 Z_R , Z_\bullet = compressibility factors for reference and unknown samples respectively

 M_{\star} = moles of unknown mixture charged

The volume of sample and the volume of reference sample are equal. The sample for analysis, trapped between valves V_1 and V_2 , was vented to the atmosphere prior to charging

VOL. 4, NO. 1, JANUARY 1959

to facilitate an accurate pressure measurement. The unknown peak area, A_{i} , is corrected for barometric pressure differences from the reference measurement by including the P_{p}

factor $\frac{P_R}{P_s}$ (*P* represents barometric pressure). Applying

this and Equation 5 to Equation 4:

$$\frac{P_R}{P_\bullet} \frac{A_i}{A_R} = \frac{M_i}{M_\bullet} \frac{Z_R}{Z_\bullet} \frac{Q_R}{Q_\bullet}$$
(6)

But $\frac{M_i}{M_a}$ = mole fraction m_i of component *i* in the unknown sample. Therefore

$$m_{i} = \frac{A_{i}}{A_{R}} \frac{Q_{\bullet}}{Q_{R}} \frac{Z_{\bullet}}{Z_{R}} \frac{P_{R}}{P_{\bullet}}$$
(7)

Equation 7 was used to calculate the composition of gas samples from measurements of unknown peak area, reference peak area, and the three correction factors (flow rate, compressibility factor, and barometric pressure). These correction factors were usually small, with a maximum of about 1% for the latter two and 10% for the first. The flow rate correction was determined by an indirect method because the rotameter was too insensitive to changes in flow. Because the initial detection time for a component

is inversely proportional to flow rate, the ratio $\frac{t_R}{t_a}$ was sub-

tituted for
$$\frac{Q_{a}}{Q_{R}}$$

S

u

 t_R , t_s = initial detection times for component in reference measurement and unknown sample, respectively

The two compressibilities, Z_{a} and Z_{R} , did not differ greatly; therefore an approximate method was used to estimate Z_{a} . A rough analysis of the mixture was calculated by taking the area ratio A_{t}/A_{R} as mole fraction, m_{i} , for each component, with proper correction to have $\sum_{i=1}^{n} m_{i} = 1.0$. Then a molel current compressibility factor use calculated

Then a molal average compressibility factor was calculated for the sample-i.e.

$$Z_{\bullet} = \sum_{i=1}^{n} m_i Z_i$$
 (8)

Compressibility factors were obtained from Silberberg and others (29).

The reference areas were checked periodically, but no significant variation was noted. The corresponding areas

Table I. Accuracy Evaluation of Chromatographic Method

	By Syn	thetic Min	ctures,	By Mass Spectrometer,			
	Mo	le Fractio	on	Mole Fraction			
Component	GLPC	True comp.	% rel. devn.	GLPC	Mass spec.	% rel. devn.	
Methane	0.801	0.7994	0.3	0.884	0.882	0.2	
Ethane	0.147	0.1498	-1.9	0.0949	0.097	-2.2	
Propane	0.0519	0.0508	2.2	0.0212	0.021	1.0	
Methane	0.0486	0.0483	0.6	0.441	0.435	1.4	
Ethane	0.193	0.1955	-1.3	0.248	0.255	-2.7	
Propane	0.758	0.7562	0.2	0.311	0.309	0.7	
Methane	0.745	0.7441	0,1	0.424	0.431	-1.6	
Ethane	0.231	0.2314	-0.2	0.150	0.153	-2.0	
Propane	0.0248	0.0245	1,2	0.426	0.417	2.2	
Methane	0.490	0,4905	-0.1	0.801	0.794	0.9	
Ethane	0.0112	0,0111	0.9	0.143	0.147	-2.7	
Propane	0.498	0,4983	-0.6	0.0559	0.058	-3.6	
Methane Ethane Propane				0.441 0.366 0.193	0.436 0.371 0.192	$ \begin{array}{r} 1.1 \\ -1.3 \\ 0.5 \end{array} $	

Figure 7. Pressure-temperature projection for light hydrocarbons

and initial detection time at 30.000 inches of mercury barometric pressure were

Component	Initial Detection Time, Minutes	Refe renc e Peak Area, Sq. Cm.
CH4	9.40	42.9
C2H6	12.70	65.7
C ₃ H ₈	24.07	85.1

Peak areas were measured by planimeter to a relative accuracy of 1%. Other indications of area (such as peak height, and peak height times width of elution curve at one half peak height) were investigated, but the accuracy was not satisfactory.

The method was evaluated by analyzing known mixtures and having spot checks made by mass spectrometer. Four

Figure 8. Pressure-composition diagram for methane-ethane system

synthetic mixtures were prepared in the manner described under infrared analyses and analyzed by gas-liquid partition chromatography. In addition, five samples taken during equilibrium measurements were analyzed chromatographically and checked by mass spectrometer analysis. The results appear in Table I.

In many cases, both infrared and chromatographic analyses were made on the equilibrium samples. Agreement was (*Text continued on page 49*)

Figure 9. Pressure-composition diagram for methane-propane system

Table !!. Results for Binary and Ternary Systems

								K-Values					
Temp., Press.	Liqui	d Compos	ition	Vapor Composition				Сн₄	C ₂ H ₆		CaHa		
°F.	P.S.I.A.	CH4	C ₂ H ₆	C,H	CH4	C ₂ H ₆	C3Ha	Exptl.	Smoothed	Exptl.	Smoothed	Expti.	Smoothed
50 50 50	100 100 100	0.0028 ^ª 0.0022 ^ª	0,0080 0,0236	0.998 0.9897 0.9764	0.057 0.0452	0.0280 0.0720	0.943 0.9268 0.9280	20.5 [°] 20.4 [°]	20.5 20.4	3.50 3.05	3.27	0.945 0.936 0.951	0.945 0.947
50	200	0.044		0,960	0.471		0.529	10.7	10.3			0,551	0.540
50	200	0.044	0.0655	0.962	0.471	0 112	0.529	10.7 10.4 ⁸	10.2	1.86	1 80	0.550	0 542
50	200	0.0390	0.160	0.811	0.275	0.284	0.470	10.2	10.1	1.77	1.78	0.543	0.545
50	200	0.0128	0,264	0.7193	0,127	0.476	0.397	9.95	9.95	1.80	1.77	0.552	0.551
50	200		0.357	0.643		0.612	0.388			1.72	1.75	0.603	0.587
50 50	400	0,128	0 175	0.872	0.685	0 103	0.315	5.35	5.55	1 10	1.07	0.361	0.350
50	400	0.0697	0,173	0.4303	0.306	0.193	0.159	4.39	4.42	1.07	1.07	0.369	0.374
50	400	0,0620	0.553	0.385	0.282	0,570	0.148	4.54	4.33	1.03	1.07	0.348	0.378
50	400	0.0302	0.7578	0.212	0.115	0.7989	0.0861	3.81	3.94	1.05	1.07	0,406	0.398
50 50	400 400		0.9066	0.0934		0,9616	0.0384			1.05	1.06	0.411	0.424
50	600	0.216		0.784	0.762		0.238	3, 53	3.46			0.304	0.304
50	600	0.214	0.151	0.635	0.663	0.133	0.204	3.10	3.26	0.880	0.860	0.321	0.316
50	600	0.204	0.178	0.618	0.654	0.150	0.196	3.20	3.23	0.843	0.860	0.317	0.320
50	600	0.178	0.376	0.446	0.521	0.332	0.147	2,93	2.95	0.883	0.860	0.330	0.343
50	600	0.174	0.457	0,369	0,487	0.382	0.131	2.80	2.88	0,836	0.860	0.355	0.352
50	600	0.113	0.768	0.119	0.286	0.6668	0.0472	2.53	2.09	0.868	0.860	0.303	0.390
50	600	0.083	0.917		0.210	0.790	010172	2,53	2.43	0.861	0.860	0.057	0.000
50	800	0.300		0 .700	0.788		0.212	2.63	2.63			0.303	0,303
50	800	0.286	0.121	0,593	0.7224	0.0906	0.187	2.53	2.51	0.749	0.748	0.315	0.312
50	800	0.268	0.359	0.373	0.588	0.282	0.130	2,19	2.18	0.786	0.780	0,348	0.350
50	800	0.255	0.454	0.291	0.534	0.357	0.109	2,10	2.07	0.787	0.790	0.3/4	0.373
50	800	0.207	0.793	0.197	0.325	0.675	0.0010	1.58	1.58	0.852	0,852	0.41.,	0.41.,
50	1000	0.413		0.587	0.805		0.195	1.95	1.95			0.332	0,332
50	1000	0.389	0.169	0.442	0 . 70 7	0.126	0.167	1,82	1.82	0,745	0.732	0.378	0.379
50	1000	0.385	0.225	0.390	0.680	0.164	0.156	1.76	1.76	0.729	0.732	0.400	0.397
50	1000	0.373	0.357	0.270	0.600	0.268	0.132	1.01	1.61	0.751	0.745	0.442	0,442
50	1000	0.3755	0.5241	C. 1004	0.4345	0,490	0.0755	1, 16	1.16	0.933	0,9400	0.751	0.776
50	1100	0,451		0.549	0.803		0, 197	1.78	1.77			0.359	0.365
50	1100	0.4365	0.0409	0.5226	0.7746	0.0306	0.1948	1.77	1.77	0.748	0.748	0.373	0.370
50	1100	0.430	0,110	0.460	0.7341	0.0849	0.181	1.71	1.71	0.771	0.749	0.394	0.394
50	1100	0.438	0,192	0.370	0.692	0.143	0.165	1.58	1.58	0.744	0.750	0.446	0.445
50	1100	0.435	0.223	0.306	0.630	0.209	0.161	1.32	1.32	0.807	0.815	0.526	0.527
50	1100	0.440	0.376	0.184	0.504	0.351	0.145	1.15	1.12	0.934	0.938	0.788	0.830
50	1200	0.498		0.502	0.784		0.216	1.57	1.56			0.430	0.432
50	1200	0,4997	0,0375	0,4628	0.7558	0.0302	0.214	1.51	1.53	0,806	0.800	0.462	0.458
50	1200	0.504	0.176	0.320	0.673	0.143	0.184	1.34	1.34	0.813	0.813	0.575	0.597
50	1200	0.508	0,243	0,249	0.584	0,219	0.197	1,15	1.15	0.901	0.901	0.791	0.810
0	100	0.0335	0.0174	0.9042	0.5789	0.0336	0.4075	15.9	15.9	1.93	1.95	0.445	0.412
ŏ	100	0,0279	0,1284	0.8437	0,400	0.246	0,354	14.3	15.6	1.92	1.95	0.420	0,418
0	100	0.0210	0.166	0.813	0.325	0.349	0.326	15.5	15.4	2.10	1.95	0.401	0.421
0	100	0.0107	0.272	0.7173	0,159	0.534	0.307	14.9	14.8	1.96	1.95	0.428	0.437
0	200	0.0004	0.373	0.027	0 769	0.092	0.300	9 47	9 47	4.0.7		0.756	0.247
0	200	0.0904	0.0127	0.9090	0.7717	0.0133	0.232	8.47	8.4/	1.05		0.230	0.247
ŏ	200	0.0702	0.250	0.6798	0.560	0.270	0.170	7,98	8.04	1.08	1.07	0.250	0.256
0	200	0.0457	0.4843	0.470	0.359	0.519	0.122	7.85	7.51	1.07	1.07	0,260	0.264
0	200	0.0127	0.8133	0.174	0.0778	0.8746	0.0476	6.12	6.33	1.08	1.07	0.274	0.278
0	400	0.100	0,9013	0.0907	0.962	0.9717	0.0205	4 32	4 2 2	1.00	1.00	0.172	0.168
0	400	0,199	0 347	0.801	0.862	0.217	0.138	4.33	4.33	0.626	0.626	0.172	0.168
ŏ	400	0.1557	0.5293	0.315	0.6003	0.343	0.0567	3.86	3.94	0,648	0.648	0.180	0.181
Ō	400	0.1364	0.7243	0.1393	0.4869	0.4852	0.0279	3.57	3.63	0.670	0.662	0,200	0.198
0	400	0.123	0.877		0,410	0.590		3.33	3.29	0.673	0.680		
0	600	0.311	0.000	0.689	0.891	o 1075	0.109	2.86	2.86	0.510	0 510	0.158	0.158
0	600 600	0.293	0.266	0.441	0.781	0.1377	0.0813	2.67	2.70	0.518	0.518	0.185	0,171
õ	600	0.272	0.481	0,247	0.6896	0,260	0.0504	2.54	2.50	0.540	0.549	0.204	0.202
õ	600	0.271	0.6204	0.1086	0.6138	0.361	0.0252	2.28	2.32	0.582	0.575	0.232	0.240
0	600 °	0.256	0.744		0,561	0.439		2,18	2.15	0.591	0.596		
0	800	0.415		0.585	0.899	0 00	0.101	2.16	2.16	0.46-	0.400	0.173	0.173
0	800 800	0.391	0.188	0.421	0.8239	0.0939	0.0517	2.11	2.13	0.499	0.498	0.195	0.191
ŏ	800	0.380	0.418	0.202	0.7318	0.224	0.0442	1.93	1.97	0.536	0.540	0.219	0.220

Terms, P.F., P.S.LA. Liquid Composition Vapor Composition CH, CH, CH, CH, CH, CH, CH, CH, CH, CH,							Table I	l. (Contin	ued)		Kay	Zelues		
**F. PS.1A. CH. C.H. C.H. C.H. Furth Senoched Purth Senoched 0 9800° 0.390 0.514 0.165 0.576 0.225 1.40 0.556 0.222 0.232 0 1000 0.512 0.0478 0.4690 0.4610 0.178 0.178 1.71 1.71 0.220 0.230 0.232 0.231 0.178 0.178 0.197 0.440 0.2420 0.220 0.232 0.230 0.232 0.231 0.127 0.128 0.127 0.128 0.140 0.140 0.568 0.548 0.440 0.548 0.440 0.548 0.440 0.548 0.440 0.548 0.440 0.548 0.444 0.549 0.444 0.548 0.548 0.448 0.548 0.448 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548 0.548	Temp	Dropp	Liquid Composition		Liquid Composition Vapor Compos		sition		CH4	C ₂ H ₆			C ₃ H ₈	
0 830 0.512 0.738 0.232 1.59 1.57 1.57 0.776 0.776 0.232 0.233 0 1000 0.515 0.786 0.497 0.432 0.105 1.77 1.71 1.71 1.71 0.776 0.548 <t< th=""><th>°F.</th><th>P.S.I.A.</th><th>CH</th><th>C.H.</th><th>C.H.</th><th>CH</th><th>C.H.</th><th>C.H.</th><th>Expt1.</th><th>Smoothed</th><th>Exotl.</th><th>Smoothed</th><th>Exotl.</th><th>Smoothed</th></t<>	°F.	P.S.I.A.	CH	C.H.	C.H.	CH	C.H.	C.H.	Expt1.	Smoothed	Exotl.	Smoothed	Exotl.	Smoothed
0 0	0	800 800	0.380	0,5142	0.1058	0.6795	0.296	0.0245	1.80	1.81 1.58	0.576 0.621	0.576	0.232	0.233
$ \begin{array}{c} 1000 \\ 0.512 \\ 0.190 \\ 0.512 \\ 0.190 \\ 0.512 \\ 0.190 \\ 0.512 \\ 0.190 \\ 0.512 \\ 0.190 \\ 0.512 \\ 0.190 \\ 0.512 \\ 0.190 \\ 0.512 \\ 0.190 \\ 0.512 \\ 0.190 \\ 0.512 \\ 0.190 \\ 0.528 \\ 0.476 \\ 0.478 \\ 0.428 \\ 0.448 \\$	0	1000	0.522	0.010	0 479	0.905	0.001	0 105	1 71	1 71			0 220	0 220
1 1 1 0 5 1 0 2 0	0	1000	0.515	0.0780	0.4/8	0.8623	0.0443	0.0934	1.68	1.68	0.568	0.548	0.230	0.235
0 000 0.514 0.239 0.247 0.751 0.148 0.154 0.148 0.148 0.248 0.258 0.258 0 1000 0.552 0.448 0.158 0.231 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.233 0.133 1.13 1.14 1.14 0.141 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144	ŏ	1000	0.512	0.187	0.301	0.8174	0.1027	0.0799	1.60	1.60	0.549	0.562	0.266	0.266
box 0.551 0.437 0.436 0.636 1.40 1.40 0.649 0.643 0.346 0.645 0 0.057 0.635 0.447 0.112 1.33 1.34 0.487 0.288 0.248 0.238 0.0481 1.148 1.44 0.459 0.646 0.238 0.444 0.453 0.444 0.453 0.444 0.453 0.444 0.453 0.444 0.453 0.444 0.453 0.444 0.453 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444 0.444	0	1000	0.514	0.239	0.247	0.791	0.140	0.0690	1.54	1.54	0.586	0.583	0.280	0.288
b b 0.001 0.252 0.254 0.255 0.166 1.24 1.15 1.15 0.156 0.175 0.156 0.172 1.175 1.23 0.164 0.254 0.143 0.436 0.436 0.436 0.436 0.436 0.436 0.436 0.436 0.436 0.436 0.436 0.436 0.436 0.436 0.436 0.436 0.436 0.436	0	1000	0.5161	0.3378	0.1461	0.7234	0.226	0.0506	1.40	1.40	0.669	0.6430	0.346	0.355
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	1000 c	0.5258	0.4467 0.478	0,0275	0.6357 0.569	0.349 0.431	0.0153	1.21 1.09	1.15 1.09	0.781 0.901	0.840 0.901	0.554	0.618
b 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0	1100	0.582		0.418	0.888		0.112	1.53	1.53			0.268	0.268
b 1	0	1100	0.5759	0.0581	0.366	0.8619	0.0341	0.104	1.50	1.50	0.587	0.585	0.284	0.284
100 0.582 0.221 0.7947 0.1231 0.0753 1.135 0.641 0.6320 0.272 0.364 0 1100 0.582 0.222 0.1360 0.7784 0.185 0.6753 1.125 1.228 0.6675 0.6665 0.6665 0.6675 0.6665 0.6675 0.6665 0.772 0.456 0.4464 0.252 0 1000 0.6494 0.223 0.1130 0.7144 0.127 1.37 1.37 6.770 0.6444 0.253 0.1366 0.6471 0.637 0.6071 1.18 1.10 0.797 0.536 0.616 1.277 1.37 6.774 0.740 0.453 0.6471 0.6481 0.630 0.677 0.160 1.22 1.23 0.740 0.453 0.471 0.448 0.155 1.19 0.740 0.453 0.471 1200 0.693 0.161 0.144 0.159 0.159 0.151 1.11 0.160 0.279 0.160 0.100 <td>0</td> <td>1100</td> <td>0,583</td> <td>0.107</td> <td>0.250</td> <td>0.8377</td> <td>0.0035</td> <td>0.0985</td> <td>1.43</td> <td>1.40</td> <td>0.593</td> <td>0.565</td> <td>0.321</td> <td>0.332</td>	0	1100	0,583	0.107	0.250	0.8377	0.0035	0.0985	1.43	1.40	0.593	0.565	0.321	0.332
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ő	1100	0.587	0,192	0.221	0.7947	0.1231	0.0822	1.35	1.35	0.641	0.630	0.372	0.364
0 1100 0.5417 0.2483 0.1600 0.7544 0.185 0.06671 1.275 1.23 0.718 0.712 0.444 0.825 0 1100 0.6044 0.225 0.136 0.6471 0.714 0.185 0.6464 0.725 0.350 0.355 0.300 0.734 0.262 0.464 0.155 1.00 0.643 0.430 0.431 0.331 0.623 0.661 0.466 0.322 1.00 0.973 0.6345 0.244 0.0344 0.1358 1.00 0.970 0.633 0.6461 0.631 1.15 1.10 0.433 0.6461 0.631 1.55 1.00 0.976 0.650 0.521 0.500 0.550 0.513 </td <td>0</td> <td>1100</td> <td>0.582</td> <td>0.228</td> <td>0.190</td> <td>0.7707</td> <td>0,154</td> <td>0.0753</td> <td>1.32</td> <td>1,28</td> <td>0.675</td> <td>0.666</td> <td>0.396</td> <td>0.410</td>	0	1100	0.582	0.228	0.190	0.7707	0,154	0.0753	1.32	1,28	0.675	0.666	0.396	0.410
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1100	0.5917	0,2483	0.1600	0.7545	0.1758	0,0697	1.275	1.23	0.708	0.712	0.436	0.460
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1100	0.6043	0.259	0.1367	0.7484	0.1855	0.0661	1.24	1.19	0.716	0.770	0.484	0.525
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1100	0.604	0,273	0.123	0.7142	0.2177	0.0681	1.18	1,10	0.797	0.920	0.554	0.710
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1200	0.637		0.363	0.873		0.127	1.37	1.37			0.350	0.350
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1200	0,6456	0.0874	0.267	0.8218	0.0625	0.1157	1.27	1.27	0,716	0.710	0.433	0.433
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1200	0.653	0.106	0.241	0.8158	0.0751	0.1091	1.25	1.23	0.708	0.720	0.453	0.471
1 1	0	1200	0.693	0.161	0.146	0.721	0.144	0.135	1.04	1.00	0,894	1.00	0.925	1.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1300	0.708		0.202	0.945		0 155	1 10	1 10			0 621	0 521
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ŏ	1300	0.7103	0.0297	0.292	0.8294	0.0246	0.135	1,17	1.19	0.828	0.828	0.561	0.560
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ō	1300	0.7315	0,0345	0.234	0.8086	0.0322	0.1592	1.11	1.11	0.933	0,960	0.681	0.630
	0	1300	0.7364	0.0396	0.224	0.7978	0.0384	0.1638	1.08	1.00	0.970	1.00	0.731	1.00
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	-50	100	0.0769		0.9231	0.840		0.160	10.9	11.5			0.173	0,160
	- 50	100	0.0614	0.1718	0.7668	0.7195	0,1628	0,1177	11.7	11.3	0.947	0,950	0.153	0.160
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-50	100	0.0486	0.302	0.6494	0.605	0.292	0.103	12.4	11.2	0.967	0.950	0.159	0.160
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-50	100	0.0479	0.399	0.5531	0.5287	0.380	0.0913	11.0	11.1	0.952	0.950	0.165	0.160
	~50	100	0.0467	0.448	0.5053	0.4952	0.425	0.0798	10.6	10.9	0.949	0.950	0,158	0.160
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 50	100	0.0261	0.994	0.248	0.260	0.082	0.0380	11.0	10.8	0.939	0.950	0.153	0,100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 50	200	0.146			0,000		0.0504			0.,, 10	0,550		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~50	200	0.125	0.268	0.854	0.9210	0 140	0.0784	6.43	6.50 6.10	0 522	0 530	0.0918	0.0920
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-50	200	0,125	0.368	0,507	0.7478	0.206	0.0462	5.98	6.00	0.560	0.531	0.0911	0.0922
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-50	200	0.119	0,627	0.254	0.6383	0.333	0.0287	5.35	5,60	0,531	0.534	0,115	0.115
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 50	200	0.0968	0,9032		0.505	0,495		5.22	5.00	0.548	0.540		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 50	400	0.296		0.704	0.9493		0.0507	3,20	3,20			0.0735	0.0710
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 50	400	0,292	0,126	0.582	0.920	0.0383	0.0417	3.15	3.18	0.304	0.304	0.0717	0.0710
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-50	400	0.271	0,289	0.440	0.8791	0,0907	0.0302	3.24	3.11	0.314	0.313	0.0687	0.0710
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~ 50	400	0.274	0.448	0.278	0.8245	0.154	0,0215	3.02	2.97	0.344	0.331	0.0773	0.0750
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-50	400	0.270	0.512	0.200	0.7086	0.1880	0.0174	2,99	2,91	0.359	0.340	0.0805	0.0840
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-50	400	0.278	0,571	0.151	0.7901	0,194	0.0159	2,74	2.83	0.340	0.352	0.105	0.0950
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~50	400	0.282	0.718	0 540	0.724	0.276	0.0415	2.57	2.61	0.384	0.385		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-50	600	0.438	0.145	0.302	0.9585	0.0485	0.0415	2.06	2.19	0.334	0.310	0.0809	0.0739
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-50	600	0,424	0,150	0,426	0.919	0,0446	0,0364	2,17	2,11	0.298	0.310	0,0855	0.0800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 50	600	0.443	0.243	0.314	0.8952	0.0790	0.0258	2.02	2.04	0.325	0.317	0.0822	0.0840
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	600	0.441	0.366	0.193	0.8637	0.119	0.0173	1.96	1.96	0.327	0.330	0.0896	0.0896
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 50	600 800	0.438	0,562	0.410	0.800	0,200	0.0410	1.83	1.83	0.356	0,356	0.0078	0.0078
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	~50	800	0.598	0, 109	0.293	0.939	0.362	0.0363	1.55	1.55	0.332	0.322	0.124	0.120
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-50	800	0.611	0.249	0.140	0.8901	0,0886	0.0213	1.46	1.44	0.356	0.356	0.152	0.157
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~50	800	0.622	0,378		0.832	0.168		1.34	1.34	0.445	0,445		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-50	1000	0.736	0.0651	0.264	0.9458	0.0221	0.0542	1.29	1.29	0 500	0 610	0.205	0.205
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	1000	0.7609	0.0051	0.174	0.9216	0.0331	0.0453	1.21	1.25	0.509	0.510	0.200	0.320
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-50	1000	0.7749	0,1261	0.0990	0.8838	0.0758	0.0404	1.14	1.13	0.609	0,635	0.408	0.452
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-50	1000	0.7837	0.1491	0.0672	0.8631	0,1001	0.0368	1.10	1.10	0.671	0.800	0.547	0.650
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	~50	1000	0.8332	0,1318	0.0350	0,8363	0.1288	0.0349	1,00	1.00	0,977	0.977	0.997	0.995
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 100	100	0.125		0.875	0,9591		0.0409	7.67	7.90			0.0468	0.0452
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-100	100	0.118	0.144	0.738	0.9186	0.0472	0.0342	7.78	7.78	0.328	0.327	0.0463	0.0452
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-100	100	0,110	0.320	0.570	0.8651	0.110	0.0249	7.77	7.60	0.344	0.335	0.0437	0.0453
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 100	100	0.101	0,580	0,310	0.7916	0.320	0.0144	7.20	7.26	0.354	0.345	0.0404	0.0450
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 100	100	0,101	01033	0.850	0.000	0.320	0.0000	4		0.000	0.000	0.0040	0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 100	200	0.222	0.121	0.778	0.9792	0.0228	0.0157	4.41	4.4U 4.72	0, 189	0.127	0,0268	0.0261
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-100	200	0,232	0,435	0,333	0,9070	0.0220	0.00897	3.91	3.81	0.193	0.201	0.0269	0.0261
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 100	200	0.236	0.483	0.281	0.8926	0.0983	0.00909	3.78	3.73	0.204	0.205	0.0324	0.0263
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 100	200	0.250	0,750		0.814	0.186		3.26	3.21	0.248	0.249		
	-100 -100	400 400	0.477 0.492	0.175	0.523 0.333	0,9855 0,963	0,0266	0.0145 [°] 0.0104	2.06 1.96	2.06 1.97	0.152	0.149	0.0277 0.0312	0.0270 0.0291

Table II. (Continued)

								X-Values					
Temp., Press.	Liquid Composition			Vapor Composition			CH4		C ₂ H ₆		C3H4		
°F.	P.S.I.A.	CH4	C₂H ₆	C3H8	CH4	C₂H ₆	C ₃ H _a	Expt1.	Smoothed	Exptl.	Smoothed	Exptl.	Smoothed
-100	400	0,496	0.242	0.262	0.9562	0.0364	0.00741	1.93	1.92	0.150	0.154	0.0283	0.0313
100	400	0.504	0.308	0.188	0.9446	0.0486	0.00685	1.88	1.86	0,158	0.156	0.0364	0 .0362
~100	400	0.5191	0,386	0.0949	0.9321	0,0630	0.00486	1.80	1.80	0.163	0.164	0.0512	0.0481
-100	400	0.528	0,472		0,9165	0.0835		1.72	1.67	0,177	0,178		
~100	600	0.744		0,256	0.9852		0.0148	1.32	1.32			0 .055 6	0.0540
-100	600	0,745	0.0520	0.203	0.9775	0.0119	0.0106	1,31	1.30	0.229	0.229	0.0522	0.0540
- 100	600	0.7647	0,1612	0.0741	0.9583	0.0366	0.00512	1,25	1.25	0,227	0.232	0.0691	0,0660
- 100	600	0.784	0.216		0.9498	0.0502		1.21	1.21	0.232	0.237		
~150	100	0.238		0.762	0,9932		0.0068	4.17	4.17			0.0089	0.0080
-150	100	0.242	0.258	0.500	0,9686	0,0282	0.0032	4.00	4.00	0.109	0.110	0.0064	0.0080
-150	100	0.240	0.275	0.485	0.9653	0.0308	0.0039	4.02	3.96	0.112	0.109	0.0080	0,0080
-150	100	0.249	0.446	0.305	0.9538	0.0433	0.0030	3.68	3.82	0.0970	0.103	0.0098	0,0097
-150	100	0.252	0.6762	0.0718	0,9299	0.0682	0.0019	3.67	3.68	0.102	0.0940	0.0265	0.0252
-150	100	0.251	0.749		0.9312	0.0688		3.71	3.61	0 .0918	0.0920		
-150	200	0,502		0.498	0.9955		0.0045	1.98	2.01			0.0090	0.0091
-150	200	0.514	0.208	0.278	0.9806	0.0167	0.0027	1,91	1,92	0.0805	0.0860	0.0097	0.0097
-150	200	0.528	0.319	0.153	0.9742	0.0234	0.0024	1.84	1.83	0.0734	0.0745	0.0157	0.0155
-150	200	0,5532	0,400	0.0468	0,969	0.0294	0.0016	1.75	1.76	0.0735	0.0710	0.0342	0.0370
-150	200	0.561	0.439		0,970	0.030		1.73	1.73	0,0683	0.0702		
-200	100	0.802		0,198	0.9993		0,0007	1.24	1.24			0,0035	0.0035
-200	100	0.8075	0.0735	0,119	0,9962	0.0021	0.0007	1.23	1.23	0.0286	0.0337	0.0059	0.0060
~200	100	0.8187	0,124	0,0573	0.9961	0.0029	0,0007 ^a	1.22	1.22	0.0234	0.0285	0.012	0,0155
-200	100	0.833	0.167		0.9965	0.0035		1.20	1.21	0.0210	0.0245		

^aCalculated by Henry's law, Bloomer and others (3), Interpolated, dEstimated,

Ł K-VALUE - PRESSURE DIAGRAM METHANE-ETHANE BINARY 5.0 Ъ ૈવ ♥ BLOOMER AND OTHERS (3) O THIS WORK ◇ API PROJECT 44 O METHANE O ETHANE 1.0 1 TQ: ×. ì K-VALUE 0.1 11 11 İ į 1 0.015 1.0 iO 100 500 PRESSURE - PSIA

usually good, but greater weight was given the GLPC analyses. The infrared method was particularly valuable for approximate analyses during attempts to reach a desired composition. This type of analysis could be performed in a very few minutes, whereas a complete chromatographic analysis required about an hour.

EXPERIMENTAL RESULTS

Equilibrium measurements were made on more than 150 mixtures involving methane, ethane, and propane over a wide range of temperatures and pressures. Conditions investigated are given below:

Temperature, °F.

50

0

- Pressure, P.S.LA.
- 100, 200, 400, 600, 800, 1000, 1100, 1200 100, 200, 400, 600, 800, 1000, 1100, 1200, 1300 100, 200, 400, 600, 800, 1000
- ~ 50 -100 100, 200, 400, 600
- -150 100, 200
- ~200 100

A complete tabulation of all binary and ternary data obtained in this investigation appears in Table II.

Presentation of Binary Equilibrium Data. The results of binary equilibrium measurements from this work have been plotted in various ways. Related data from other sources have been included where applicable.

The pressure-temperature projection showing vapor pressures of methane, ethane, propane, and n-butane is given in Figure 7. Included are the known critical loci for the associated binary systems.

Pressure-composition diagrams for the systems methaneethane and methane-propane from this work are shown in Figures 8 and 9.

K-value vs. pressure and K-values vs. temperatures are plotted in Figures 10 to 13 for the same systems. In low pressure regions where either the Henry-Dalton or the Racult-Dalton relationships hold, the log K vs. log Pcurves become 45 degree lines. These rules may be applied in the extension of high pressure data to lower pres-

sures. In particular, the Raoult-Dalton relationship is useful, since the vapor pressure of the less volatile component provides an anchor point for the K-value of the component at low pressures.

The actual experimental data have been plotted on the K-P diagrams (Figure 10 and 12), whereas smoothed values, taken from these curves appear on the K-T graphs (Figures 11 and 13). The dotted extensions of the curves for pres-

Figure 14. Pressure-composition diagram for ternary system at 0° F.

sures below the critical are estimations and the accuracy should be interpreted accordingly. They terminate when the value of the boiling point at the particular value of pressure is reached.

Presentation of Ternary Equilibrium Data. For a ternary system, complete representation of two-phase equilibrium requires the definition of three independent variables. Thus, at a given temperature, ternary equilibria may be represented in three dimensions. Figure 14 shows a pressure-composition diagram for the ternary mixture at $0^{\circ}F$. The faces of the prism are recognized as being the binary *P-X* plots. They bound the three-dimensional figure repre-

Figure 15. K-value-composition diagram for ternary system at 50° F.

Figure 17. K-value-composition diagram for ternary system at $-50\,^\circ$ F.

senting the ternary system. Several constant pressure sections are shown, intersecting the equilibrium surfaces along the solid lines, with example tie lines being dotted. Such diagrams can be constructed for various temperatures, representing the entire vapor-liquid region. While this type of representation is important qualitatively, its quantitative value is limited.

To represent the experimentally determined K-values, some composition variable must be included with temperature and pressure. It is customary to use the composition of a component in one of the equilibrium phases or some function of phase composition. In this work, the ethane concentration in the liquid was selected because its degree of variation was generally the greatest. The experimental data are plotted as log K vs. ethane concentration in the liquid with parameters of constant pressure for each temperature. The graphs appear as Figures 15 to 20.

Because of extremely low concentrations of methane in the liquid phase at 50°F. for the 100 and 200 p.s.i. runs, the analytical accuracy is doubtful. A method of predicting the data in this region was therefore selected. The binary K-values were obtained by assuming Henry's law and extending the curves as 45° lines into the low pressure region, as was previously discussed. Although not strictly applicable to ternaries, the method was used in a modified form. A hypothetical binary was assumed by taking Kvalues of propane from the propane K vs. ethane concentration plots at constant concentrations of ethane in the liquid. The K-P curves thus obtained were extended as before into the low pressure region to get K-values.

Figure 19. K-value-composition diagram for ternary system at - 150° F.

Figure 18. K-value~composition diagram for ternary system at ~100°F.

Analytical difficulties were also encountered at very low temperatures where the concentration of the heavier components in the vapor is low. Unfortunately, Raoult's law cannot be applied to smooth the K-values of ethane and propane at -200°F. because their concentration in the liquid is not high enough to consider them as solvents. The ~200°F. curve for propane K-value in the K-P diagram of the methane-propane binary (Figure 12) was used as a basis. An experimental K-value for propane of 0,0035 was assumed correct with relation to the higher isotherms. The measured propane concentration in the vapor phase was about 0.07 mole %. Previous data (Table II) have indicated that the vapor phase becomes consistently leaner in propane as ethane is increased in the liquid. As a conservative move, the propane concentration in the vapor

was assumed constant at 0.07 % as the liquid changed, yielding the curve in Figure 20. This should represent the maximum K-value curve for propane at -200°F. and 100 p.s.i.a.

GENERAL COMMENTS

No retrograde condensation was observed in the external visual cell during the experimental operations. Close watch was kept, especially at high pressure conditions where the propane concentration in the vapor became large.

Critical opalescence occurred in the equilibrium cell during measurements near the critical points of the various mixtures. A rust-brown color was observed with the transmitted fluorescent light. Reflected light gave only a graywhite color. The color effect was estimated as occurring in a region within 10 p.s.i. of the critical. It was more easily obtained by approaching the critical from the high pressure side.

This phenomenon of critical opalescence has been previously investigated, from an experimental and theoretical standpoint (4, 8, 17, 19, 30, 32, 33, 35). It is apparently due to microscopic density fluctuations in the form of molecular clusters.

The data presented here have been used as a basis for study of the use of the Benedict-Webb-Rubin equation of state (2) for the estimation of low temperature phase equilibria data (22). The data are presented in correlative form using DePriester type plots (22).

ACKNOWLEDGMENT

P. D. Harvey is credited for his earlier efforts in constructing and testing the experimental equipment. The research was carried out under generous fellowship grants from the American Oil Co., Standolind Oil and Gas Co., and Dow Chemical Co. Phillips Petroleum Co. and the Tennessee Gas Transmission Co. supplied the pure hydrocarbons.

LITERATURE CITED

- Akers, W. W., Burns, J. F., Fairchild, W. R., Ind. Eng. Chem. 46, 2531 (1954).
 Benedict, M., Webb, G. B., Rubin, L. C., J. Chem. Phys. 8,
- 334 (1940).
- (3) Bloomer, Q. T., Gami, D. C., Parent, J. D., Inst. Gas Tech-nol., Research Bull. 22 (July 1953). (4) Booth.
- H. S., Wilson, K. S., J. Am. Chem. Soc. 57, 2280 (1935).
- (5) Bradford, B. W., Harvery, D., Chalkley, J. Inst. Petrol. 41, 375 (1955).
- (6) Buckley, S. E., Lightfoot, J. H., Petroleum Trans., AIME 142, 232 (1941).
- (7) DePriester, C. L., Chem. Eng. Progr. Symposium Ser. 49 (7), 1 (1953).
- (8) Donnan, F. G., Brit. Assoc. Advance Sci. Rept., 1904, 504. (9) Guter, M., Newitt, D. M., Ruhemann, M., Proc. Roy. Soc. (London) 176A, 140 (1940).
- (10) Harvey, P. D., M. S. thesis, Rice Institute, Houston, Tex., 1953.
- (11) James, A. T., Chem. & Process Eng. 36, 95 (1955).
- (12) James, D. H., Phillips, C. S. G., J. Chem. Soc. 1953, 1600. (13) Kharakhorin, F. F., J. Tech. Phys. (U.S.S.R.) 11, 1133 (1941).
- (14) Levitskaya, E. P., Ibid., 11, 197 (1941).
- (15) McCurdy, J. L., Katz, D. L., Ind. Eng. Chem. 36, 675 (1944).
 (16) McKay, R. A., Reamer, H. H., Sage, B. H., Ibid., 43, 2112
- (1951)
- (17) Mondaine-Monval, P., Quiquerez, J., Bull. soc. chim. 12, 380 (1945).
- (18) Nederbragt, G. W., Ind. Eng. Chem. 30, 587 (1938). (19) Olds, R. H., Sage, B. H., Lacey, W. N., Ibid., 34, 1008
- (1942). (20) Patton, H. W., Lewis, J. S., Kaye, W. L, Anal. Chem. 27, 170 (1955)
- (21) Phillips, C. S. G., Discussions Faraday Soc. 7, 241 (1949).
- (22) Price, A. R., Ph.D. thesis, Rice Institute, 1957.
- (23) Price, A. R., Leland, T. W., Kobayashi, R., Evaluation of Benedict-Webb-Rubin Equation for Prediction of Phase Equilibrium of Light Hydrocarbon Mixtures at Low Temperatúres, Chem. Eng. Progr. Symposium Ser. 21, 54 (1958).
- (24) Ray, M. H., J. Appl. Chem. (London) 4 (21), 82 (1954).
- (25) Ruheman, M., Proc. Roy. Soc. (London) 171 A (1939).
 (26) Ruheman, M., "Separation of Gases," 2nd ed., Oxford University Press, 1949.
- (27) Sage, B. H., Lacey, W. N., Oxford, England, Schassfma, J. G., Ind. Eng. Chem. 26, 214 (1934).
- (28) Shearer, L. T., Kobayashi, R., Rice Institute, Houston, Tex., unpublished data, August 1956.
- (29) Silberberg, L. H., Kuo, P. K., McKetta, J. J., Petrol. Engr. 24 (5), C5-10 (May 1952).
- (30) Smoluchowski, M. S., Phil. Mag. (VI) 23, 165 (1912).
- (31) Stutzman, L. F., Brown, G. G., Chem. Eng. Progr. 45, 139 (1949).
- (32) Travers, F. R. S., Usher, F. L., Proc. Roy. Soc. (London) 78A, 247 (1906). (33) Villard, P., Ann. chim. et phys. (Ser. 7), 387 (1897). (34) Volova, L. M., J. Phys. Chem. (U.S.S.R.) 14, 268 (1940).
- (35) Zemike, F., Arch. neerl. sci. 111A, 4, 74 (1917).
- Received for review March 16, 1957. Accepted January 24, 1958.